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ELEMENTS 
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SUMMARY 

A finite and infinite element model is derived to predict wave patterns around a semi-infinite 
breakwater in water of constant depth. Both circular and square meshes of elements are used. The 
wave theory used is that of Berkhoff. The appropriate boundary conditions for finite and infinite 
boundaries are described. The singularity in the velocity at the breakwater tip is modelled effectively 
using the technique of Henshell and Shaw originally developed in elasticity. The results agree well with 
the analytical solution. In addition the problem of waves incident upon a semi-infinite breakwater and 
parabolic shoal, where both difiaction and refraction are present, is solved. There is no analytical 
solution for this case. The combination of finite and infinite elements is found to be an effective and 
accurate technique for such problems. 
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INTRODUCTION 

Breakwater 

The theory of wave diffraction has received much attention since tLae work of SommerJdl 
on the diffraction of plane monochromatic light waves by a half plane. Penney and Price' 
showed that the Sommerfeld solution of the diffraction of light is also a solution of the water 
wave diffraction phenomenon. Wiege13 used the exact solution of Penney and Price to 
calculate and plot the diffraction coefficients for a semi-infinite breakwater. Shou-Shan Fan4 
wrote a computer program to simulate this analytical solution. 

In this paper we are concerned with the application of finite element techniques to predict 
wave patterns around a vertical thin impervious rigid semi-infinite breakwater with constant 
or varying depth of water in the horizontal plane. The aim is first to reproduce the analytical 
results and then to generate results for problems for which no analytical solutions are 
available. 

The theory uses a potential representation of the velocities in the fluid with a linearized 
surface boundary condition. The resulting two dimensional equations must be solved in a 
domain which is assumed infinite. In general waves come from infinity, and after reflection 
are radiated to infinity. The radiation of the waves to infinity represents a constant energy 
loss and the mathematical model of the system must be able to deal with this. The present 
approach is to model the entire domain using elements, some of which extend to infinity. 
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An analytical solution computer program written in Algol 68-R and based upon that of 
Shou-Shan Fan has been developed which predicts the wave height variations around the 
semi-infinite breakwater. This has been run in the same cases as the present finite element 
model. The results will be compared later. 

THEORY 

Berkhoff’,6 developed an approximate general theory of waves, and the theory presented 
here is based on his work. The wave equation 

(1) 
WAC v . (cc, V&) + 40 = 0 c 

is obtained, providing terms O(v2)  are neglected. In the above equation c, the wave celerity, 
is given by o / k  where k is wave number and c,, the group velocity, is given by c, = nc and 

n = +(1+ 2khlsinh 2kh) (2) 
For shallow water waves kh is small and so tanh kh = kh. v is a parameter‘ [H/(AL)’/’], 
where A =mean wave length, L =horizontal length and H =  wave height. This leads to 
c = (gh)l/’, and n = 1, so that equation (1) becomes the familiar shallow water wave equation 

For deep water kh is large and so tanh kh = 1. This leads to c = g /o ,  and n = 112, so that 

It is evident that for intermediate but constant depths, equation (1) is correct. 
The boundary conditions which the differential equation (1) must satisfy must be specified. 

On solid boundaries the velocity must be zero and hence a4/an = 0, where n is the outward 
normal to the surface. This implies total reflection of the wave, such as may occur on an 
impermeable vertical wall. In real problems the reflection will be partial as energy absorption 
will occur on a shoaling beach due to wave breaking, or on a real breakwater where the 
porous nature of the boundary does not result in a zero boundary velocity. For such a 
boundary, the condition can be written 

where a is a real dimensionless damping coefficient. 6 is the velocity potential which 
depends upon time, t, and cf~ is the velocity potential for periodic waves, so that 
i ( x ,  y, z, t )  = +(x, y, z )  exp ( i d ) .  In terms of complex response the boundary condition 
becomes 

Total reflection is given by a = 0, and total absorption by a = 1, so it is readily seen that for 
any partial reflection 0 5 a 5 1. Where the energy absorption is due largely to inertia terms, 
such as occur in wave breaking, a could be given a complex value. However in view of the 
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scarcity of experimental data, the determination of such constants is too complicated to be 
attempted. Austin and Bettess discuss the longshore boundary ~ond i t ion .~  

The boundary condition which must be imposed as the position of the boundary tends 
mathematically to infinity is more difficult. Here it is not sufficient to simply require that the 
4 corresponding to  outgoing waves tends to zero as the distance tends to infinity, but an 
additional condition needed is one requiring no return of reflected waves from infinity. If at a 
large distance from the surface of the disturbance plane waves proceeding in a radial 
direction are assumed, a general wave form can be written as 

6 = F,(r - ct)  + F2(r + ct) (7) 

where c is the wave velocity. The returning wave, F,, is now required to vanish. It can be 
seen that 

8 6  a6 -=FF; d r  and -=-cFI a t  

so this condition can be written as 

a&- l a &  
ar  c at 
_-  

For periodic motion this condition becomes 

34 io 
-= - -4  ar c 

(9) 

The above condition was derived by Zienkiewicz and Newton,8 and is a special case of the 
Sommerfeld radiation which in two dimensions is 

Lim r1/2(-+- io 4)  = 0 
r-rn ar c 

It is essential thus that any formulation of an unbounded wave problem should satisfy this 
condition either at a finite boundary which is deemed to represent infinite conditions or at 
infinity itself, if it is included in the mathematical model. Although equation (10) only 
applies, strictly, to plane waves, normally incident upon the boundary, as the radius at which 
the boundary is placed is increased it will tend towards the exact boundary condition. The 
above conditions apply only to the reflected wave, not the incident wave. 

VARIATIONAL FORMULATION AND DISCRETIZATION 

General statement 

The numerical solution of equation (1) will now be discussed, for which purpose it will be 
convenient to split the domain of the problem into inner and outer parts. The velocity 
potential in the outer domain is written 

4 = 41+ 4 R  (12) 
Where 4' is the known incident wave and 4R is the outgoing wave, unknown at present. The 
variational functional from which equation (1) arises can now be written as 

r r  = [ C C , ( O ~ ) ~  - w2cp 42] dx dy - 1, $ i o ~ u c , 4 ~  ds 
C 
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The natural boundary condition now corresponds to equation (6) on the boundary S1. In the 
outer domain the same functional is used but now equation (12) is substituted, i.e. 

The Euler-Lagrange equation obtained by varying 4R is equation (l), and the natural 
boundary condition (6), is also obtained (see, for example, Reference 11). 

The outer domain functional can be simplified. The quadratic terms in 4' are not subject 
to variation and can thus be discarded. As 4' is already a solution of continuity equation, the 
linear terms in 4' can be transformed to a line integral on the inner domain boundary. This 
is done as follows. 

Consider the second term of the right hand side of equation (15). 

The last term of equation (16) can be written as 

For constant depth, implying constant c and c,, the term in square brackets above 
is automatically zero, because 4', by definition, satisfied equation (1). Using Green's 
theorem and the preceding arguments, the functional for the waves in the outer region can 
be written as 

r =  JI$ [ C C ~ ( V C $ " ) ~ - C ~ ~ ' ] ~ X ~ ~ +  W*C, (18) 

The second term of equation (18) vanishes at the infinitely distant boundary as 4R and 
adR/& both become zero there in addition to the requirement of equation (11). On the 
inner boundary integral produces a 'forcing' term. 

The only restriction on the incoming wave in this formulation is that it is a solution of the 
wave equation. As analytical wave equation solutions are relatively rare, the computer 
program described later allows only two kinds of incident waves. These are a plane 
monochromatic wave, and the same wave plus its total reflection at an infinite straight wall. 

Finite and infinite elements 

To discretize the problem in the standard finite element manner it is necessary to describe 
the unknown function 4 or 4" in terms of nodal parameters, q, and prescribed shape 
functions, as for example 

4 = Nia, (19) 
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Minimizing with respect to nodal parameters results in the usual finite element forms, which 
are described in standard texts." Two finite elements are used in the inner region. These are 
isoparametric forms of the 6 noded triangle and the 8 noded quadrilateral elements. Detailed 
formulations are given in Reference 12, and standard numerical integration procedures using 
Gauss-Legendre numerical integration13 are followed. 

In the outer domain, which extends to infinity, a different approach is necessary. Here 
either a boundary integral form of solution can be attempted, or special infinite elements14 
can be developed, which approximate to the true solution. Here the second approach will be 
adopted. 

Infinite element-numerical integration 
The radial direction within the infinite element is denoted by the co-ordinate s, which must 

have the same metric as the x, y co-ordinates of the problem, unlike 5.'' 
At each integration point within the element the derivatives needed in the functional can 

be found by transforming them from s, q co-ordinates to x, y co-ordinates, using the 
Jacobian matrix based on the original finite shape function, and the integration can proceed 
numerically as usual.12 

In the s direction of course Gauss-Legendre numerical integration is not appropriate. 
Gauss-Laguerre numerical integration was originally used instead.l3*l4 This is often used for 
potential infinite elements and it proved moderately successful here. However large numbers 
of sampling points were needed in the s direction to achieve reasonable accuracy. (Up to 32 
points were used). This was due to the approximation by the integration formula of a 
harmonic function eiks as a polynomial. 

It seemed that a specially designed integration formula might be more effective. An 
integration formula essentially similar to the Newton-Cotes formulae was devised, to 
account for the harmonic terms in the shape function. The formula evaluates integrals of the 
form 

[P(s)e-"'ei@' ds (20) 

where P ( s )  is a polynomial and (Y and p are constants. The sampling points were chosen 
arbitrarily to be at (2n + 1)/4 multiples of the wavelength. This seemed reasonable as it 
avoided the zeros of the real and imaginary parts of eiPs. A series of formulae for 
polynomials up to quintic was developed and checked. As an example the three point 
formula is here derived. The polynomial P ( s )  is expressed in terms of Lagrange polynomials, 
and the values of P at the first 3 integration points (s=.rr/4p, 3 d 4 @  and 5.rr/4@) so that 

P = L,P1 + L2P* + L3P3 (21) 
Where L, are the Lagrange polynomials. Equation (21) is integrated, to give 

[omPe-"'e'" ds = P,  Lle-usei@s ds + P2 L2e-aSei@S ds + P3 L3e-asei@s ds (22) 

The three integrals give the weights in the integration formula. The first weight will be 
P L- P 
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The equality 

is now used to give 

Table I. Abscissas and weights for 
integrals of the form 

~OmP(s)e-"'c'Bs ds 

Abscissa Weight ( r  = 3) 

5%- 3 2 p  4p2 - - r - - r 2 + l r 3  
46 8 7 r  rr 

The other weights can be found similarly, and the extension to formulae with more weights 
is straightforward. The three point formula shown in Table I evaluates exactly the element 
matrix for the parent element shape and this was checked analytically. 

In practice a 6 point formula has been used most often and an economy over the 
Gauss-Laguerre integration is achieved. 

ANALYTICAL SOLUTION 

The problem of diffraction around a semi-infinite breakwater has been solved by Sommer- 
feld' and Penney and Price,' and a numerical evaluation of the solution can be found in 
Reference 4. The incident wave makes an angle of Oo degrees with the positive x-axis (see 
Figure 1). The solution at a point P with cylindrical co-ordinates ( I ,  8, z )  is by 

4 = A  exp (iot) cosh [ k ( z  + h)]F(r, 0) (27) 

and the free surface can be given by 

A i o  
g 

q = - cosh (kh)  exp (iot)F(r, 8) 

with 
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Figure 1. Geometry of semi-infinite breakwater diffraction problem 

where 

A = arbitrary constant 
t = dummy variable 

Equation (32) can be rewritten as: 

f(a) = 7 I t i  [I-, O e-imz/2 dt + [e-imtz'2 dt] 

l + i  (1-i) -- ___ 
- 2 [ + [MS (7rt2/2) dt -i[ sin (7rrt2/2) dt] 

1 
where 

(34) 

(35) 

(36) 
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M and N are the Fresnel integrals which are evaluated numerically by using asymptotic 
series (for r z 8 )  and Maclaurin series (for r<8). The solutions of both series are widely 
available on computers. In this case the Algol 68-R library function ‘FRESNEL’ has been 
used. 

In the computation of the diffraction waves, three regions have been considered (see 
Figure 1). Within each of these regions the wave effects are different. Region S is bounded 
by the breakwater and sheltered from the direct action of the incident wave. The waves 
reaching this region are only affected by diffraction. Region R is defined by the direction of 
the reflected wave passing through the breakwater tip, and breakwater itself. It consists of 
incident, reflected and diffracted waves. Region Q is located between regions R and S. It 
contains primarily the incident wave energy but is also affected by diffraction near the 
boundaries. 

The wave height in any of the three regions can be calculated by the following formulae. 
In region S: 

F(r, e)=mf(a)exp[-ikrcos ( O - O , ) ] + f ( c T r )  exp[-ikr cos(6+0, ) ]  (37) 
diffracted wave 

In region Q: 

F( r, 0) = exp [ -i kr cos (8  - e,)] 
incident wave 

-f(-a) exp [-ikr cos (0 - 0,)]+f(a’) exp [-ikr cos (e + e,)] 
w 

diffracted wave 

In region R: 

F(r, 6) = exp [-ikr cos (0 - O,)]+exp [-kr cos (0 + e,)] 
Y ’- 

-f(-u) exp [-ikr cos (0 - e,)]+f(-a’) exp [-ikr cos (0 + do)] 

L 

incident wave reflected wave 

(39) 
w 

diffracted wave 

RESULTS 

The aim was first to test the finite and infinite element numerical model on the classical 
diffraction problem. To see how well it reproduced the analytical solution. Then other 
problems, which have not, to date, been solved analytically, were analysed. 

Difiaction by semi-infinite breakwater 

One of the difficulties associated with numerical modelling of the diffraction problem is 
that there is a singularity in the velocity at the breakwater tip. That singularity is of the form 

v4 - r - l l =  

It can however be modelled quite effectively using a technique which was originated in the 
field of elasticity by Henshell and Shaw.16 Their method was to  deliberately move the 
midside node of the 8 node isoparametric element to the quarter point, which induces a 
singularity in the element at the closest corner. This is because the Jacobian matrix is n o  
longer invertible at that point. This singularity is of precisely the kind which is needed at the 
tip of the breakwater. 
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(b) 

Figure 2. Element meshes (a) circular mesh; (b) square mesh 
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It should be noted that although this device enables the numerical technique to simulate 
the singularity found in the analytical solution, this singularity does not occur in real water 
waves. In the water waves the high velocity gradients at the tip of the breakwater produce 
viscous forces which retard the flow leading to separation and the formation of vortices. 
These may be observed in model tests. However the details of this flow are too complicated 
to be incorporated in this numerical model. 

Two different meshes of elements were used for this problem, one based on a circle and 
the other on a square. The meshes are shown in Figures 2(a) and 2(b). Also shown is the 
detail of the positioning of the midside nodes in the finite elements at the tip of the 
breakwater, so as to induce an appropriate singularity there. 

Figures 3 and 4 show the real and imaginary components of wave elevation along a line 
perpendicular to the breakwater and running through its tip, with and without the singularity 
induced at the tip. The wave data are as follows: g = 9-81 m/s2, h = 15-0 m, w = 0.3142 rad/s, 
k = 0.02590 (l/m), A = 242.610780 m, t = 20 s and angle of incidence 90". Figure 3 shows 
midside nodes in the first element put at midpoint and Figure 4 shows results when they are 
at quarter points. It is clear that displacing the midside nodes gives much better results in the 
vicinity of the breakwater tip. This shows that the Henshell technique for modelling the tip 
singularity is very effective. Both meshes were run for waves incident at 90" to the 
breakwater and also 45" and 135". In Figures 5-7 contour plots of the absolute values of the 

- REAL THEORY 
I M A G  THEORY - 

0 REAL FE 
A I Y A G  FE 

Figure 3. Semi-infinite breakwater-heights of diffracted waves. The wave heights on a line perpendicular to 
breakwater through tip: angle of incidence 90" to breakwater; wavelength = 242.610780 m; wave period = 20 s ;  

mid-side nodes at mid-points 
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REAL THEORY 
I M A G  THEORY 

- 
0 R E A L  FE 
A I M A G  FE 
- 

Figure 4. Semi-infinite breakwater-heights of diffracted waves. The wave heights on a line perpendicular to 
breakwater through tip: angle of incidence 90" to breakwater; wavelength = 242.610780 m; wave period = 20 s; 

mid-side nodes at quarter points 

wave elevations are shown. In addition the analytical results were generated at the finite 
element nodes and the results were also processed by the finite element contour plotting 
program. Because of the large number of nodes this technique is accurate. It can be seen that 
the contour plots for finite element and analytical solutions are very similar. The two 
different shapes of mesh have no appreciable effect on the results. Figures 4, 8 and 9 show 
wave elevations plotted along lines perpendicular to the breakwater, and a comparison with 
the analytical values. Figures 10-12 show the effect of reducing the wavelength. The results 
become progressively less accurate as the wavelength is decreased. This is to  be expected. As 
a general rule it is necesary to have about 4 elements per wavelength to obtain satisfactory 
resolution of the wave detail. If this restriction is satisfied good agreement is obtained with 
analytical solutions. 

In the mesh shown in Figure 2(a) there are about 560 nodal unknowns. As they are 
complex this corresponds to approximately 1120 real unknowns. The main solution phase is 
carried out by the Irons frontal program, modified to deal with complex numbers. The total 
execution time was 335 s CPU on an ICL 2966, running under the DME operating system. 
The program and storage occupy 51 K 24 bit words of central memory. The program is 
organized so that it can be made to use more central memory if available, with less demand 
upon backing store. 

In general halving the wave period will roughly halve the wavelength, and for the same 
physical extent of problem, a mesh with a subdivision twice as fine will be required. This 
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( a )  

( C )  ( d )  

Figure 5. Contour of absolute values of wave height: wave amplitude = 1.0; wave period = 20 s; wavelength = 
242.610780 m; accleration due to  gravity = 9.81 m/(s)', angle of incidence = 90" (wave incident from bottom of 
page): (a) analytical solution evaluated at points in circular mesh; (b) numerical solution from finite and infinite 
elements in circular mesh; (c) analytical solution evaluated at points in square mesh; (d) numerical solution from 

finite and infinite elements in square mesh 
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( a )  

( C )  

Figure 6. Contour of absolute values of wave height: wave amplitude = 1.0; wave period = 20 s; acceleration due to 
gravity = 9.81 m/(s)*; angle of incidence = 45" (wave incident from bottom of page): (a) analytical solution evaluated 
at points in circular mesh; (b) numerical solution from finite and infinite elements in circular mesh; (c) analytical 
solution evaluated at  points in square mesh; (d) numerical solution from finite and infinite elements in square mesh 
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( C )  ( d )  

Figure 7. Contour of absolute values of wave height: wave amplitude = 1.0; wave period = 20 s; acceleration due to 
gravity = 9.81 m/(s)*; angle of incidence = 135" (wave incident from bottom of page): (a) analytical solution 
evaluated at points in circular mesh; (b) numerical solution from finite and infinite elements in circular mesh; (c) 
analytical solution evaluated at points in square mesh; (d) numerical solution from finite and infinite elements in 

square mesh 
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- REAL THEORY - I M A G  THEORY 
0 R E A L  FE 
A I M A G  FE 

Figure 8. Semi-infinite breakwater-heights of diffracted waves. The wave heights on a line perpendicular to 
breakwater through tip: angle of incidence 45" to breakwater; wavelength = 242.610780 m; wave period = 20 s 

N 
Figure 9. Semi-infinite breakwater-heights of diffracted waves. The wave heights on a line perpendicular to 
breakwater through tip: angle of incidence of 135" to breakwater; wavelength = 242.610780 m; wave period = 20 s 
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Figure 10. Semi-infinite breakwater-heights of diffracted waves. The wave heights on a line perpendicular to 
breakwater through tip: angle of incidence = 90" to  breakwater; wavelength = 121-305390 m; wave period = 10 s 
0 

71 N 

Figure 11. Semi-infinite breakwater-heights of diffracted waves. The wave heights on a line perpendicular to 
breakwater through tip: angle of incidence 90" to breakwater, wavelength = 97.0443120 m; wave period = 8 s 
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Figure 12. Semi-infinite breakwater-heights of diffracted waves. The wave heights on a line perpendicular to 
breakwater throught tip: angle of incidence = 90" to breakwater; wavelength = 84.913770 m; wave period = 7 s 

increases the number of nodal unknowns by a factor of 4. So the storage will increase by a 
factor of 16 and the time by a factor of 64. (Since the number of storage locations is 
proportional to the square the number of unknowns and the number of operations is 
proportional to their cube.) The actual figures will not be quite as bad as this since it is only 
the dominant terms in the storage and operation requirements which are quadratic and 
cubic, respectively. However it is clear that, although in principle diffraction and refraction 
problems can be solved for any wavelength by this method, in practice the computing 
resources required increase very rapidly as the wavelength is reduced. It should perhaps be 
emphasized that in modern computers the terms of finite element analyses described in this 
paper are very small and quick. Wave problems with very short wavelengths are computable. 

Diffraction and reflection by semi-infinite breakwater and parabolic shoal 

To the semi-infinite breakwater originally considered is now added a parabolic shoal. The 
details of the geometry are shown in Figure 13. In Figure 14 the wave elevations are shown 
for a wave incident at an angle of 90" to the breakwater. A comparison of Figures 5 and 14 
shows the changes to the wave pattern caused by the introduction of the shoal. The contours 
of absolute wave height are seen to be curved in towards the tip of the breakwater. Also the 
maximum amplitude, where the standing wave forms at the breakwater is 'sucked' in towards 
the tip and is increased in magnitude to 2.774 from 2.468 times the incident wave amplitude. 

Figure 15 shows another example of a shoal and breakwater, with the results given in 



Figure 13. Geometry of parabolic shoal and element mesh. Finer mesh around the tip of breakwater 

Figure 14. Wave elevations for a wave of wavelength incident at 90" to the breakwater. Finer mesh around the tip 
of breakwater 



Figure 15. Geometry of shallower parabolic shoal and finer element mesh 

Figure 16. Wave elevations for a wave of wavelength incident at 90" to the breakwater 
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Figure 16. Again comparison may be made with Figure 5. In this case the shoal is more 
extensive and shallower and refraction is more marked. The peak value of wave elevation is 
now 3.212. 

CONCLUSION 

Finite and infinite elements used together are an effective and accurate way of modelling 
diffraction effects at breakwaters even if refraction is present. As discussed above the chief 
limitation of the technique is the fine mesh required when the incident wavelength is short. 
Even so with modern computing power, becoming increasingly cheaper, this is not a serious 
drawback. 
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